博客
关于我
flink读取hive表数据的一些现象
阅读量:763 次
发布时间:2019-03-23

本文共 384 字,大约阅读时间需要 1 分钟。

一个可能的解释是,配置文件中的executionplanner设置直接影响了Flink如何处理数据。默认的execution设置为streaming,这适用于处理实时数据流,但在某些情况下,批量处理可能提供了更好的性能或数据一致性。与此同时,planner设置到batch说明Flink使用批量处理模式。

用户提到的现象显示,无论是创建Hive表还是Flink流表,由于type: streamingbatch都能正常工作,说明它们在不同的数据量和处理需求下都可以有效使用。特别是在处理外部日志文件时,批量处理能完全读取数据,而流处理则可能遇到读取逻辑上的问题。这可能是因为批处理模式更适合处理完整的、离散的数据集,而流处理则需要数据持续生成。

通过这些分析,可以得出配置文件中的execution设置直接反映了Flink处理数据的方式,从而影响了查询和处理性能。

转载地址:http://eykkk.baihongyu.com/

你可能感兴趣的文章
mysql常用命令
查看>>
MySQL常用命令
查看>>
mysql常用命令
查看>>
MySQL常用指令集
查看>>
mysql常用操作
查看>>
MySQL常用日期格式转换函数、字符串函数、聚合函数详
查看>>
MySQL常见函数
查看>>
MySQL常见架构的应用
查看>>
MySQL常见的三种存储引擎(InnoDB、MyISAM、MEMORY)
查看>>
MySQL常见的三种存储引擎(InnoDB、MyISAM、MEMORY)
查看>>
MySQL常见约束条件
查看>>
MySQL常见错误
查看>>
MySQL常见错误分析与解决方法总结
查看>>
mysql并发死锁案例
查看>>
MySQL幻读:大家好,我是幻读,我今天又被解决了
查看>>
MySQL底层概述—1.InnoDB内存结构
查看>>
MySQL底层概述—2.InnoDB磁盘结构
查看>>
MySQL底层概述—3.InnoDB线程模型
查看>>
MySQL底层概述—4.InnoDB数据文件
查看>>
MySQL底层概述—5.InnoDB参数优化
查看>>