博客
关于我
flink读取hive表数据的一些现象
阅读量:763 次
发布时间:2019-03-23

本文共 384 字,大约阅读时间需要 1 分钟。

一个可能的解释是,配置文件中的executionplanner设置直接影响了Flink如何处理数据。默认的execution设置为streaming,这适用于处理实时数据流,但在某些情况下,批量处理可能提供了更好的性能或数据一致性。与此同时,planner设置到batch说明Flink使用批量处理模式。

用户提到的现象显示,无论是创建Hive表还是Flink流表,由于type: streamingbatch都能正常工作,说明它们在不同的数据量和处理需求下都可以有效使用。特别是在处理外部日志文件时,批量处理能完全读取数据,而流处理则可能遇到读取逻辑上的问题。这可能是因为批处理模式更适合处理完整的、离散的数据集,而流处理则需要数据持续生成。

通过这些分析,可以得出配置文件中的execution设置直接反映了Flink处理数据的方式,从而影响了查询和处理性能。

转载地址:http://eykkk.baihongyu.com/

你可能感兴趣的文章
MySQL 的全局锁、表锁和行锁
查看>>
mysql 的存储引擎介绍
查看>>
MySQL 的存储引擎有哪些?为什么常用InnoDB?
查看>>
Mysql 知识回顾总结-索引
查看>>
Mysql 笔记
查看>>
MySQL 精选 60 道面试题(含答案)
查看>>
mysql 索引
查看>>
MySQL 索引失效的 15 种场景!
查看>>
MySQL 索引深入解析及优化策略
查看>>
MySQL 索引的面试题总结
查看>>
mysql 索引类型以及创建
查看>>
MySQL 索引连环问题,你能答对几个?
查看>>
Mysql 索引问题集锦
查看>>
Mysql 纵表转换为横表
查看>>
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>